

Estd. 1962

"A++" Accredited by NAAC (2021) With CGPA 3.52

SHIVAJI UNIVERSITY, KOLHAPUR - 416004, MAHARASHTRA

PHONE:EPABX-2609000, www.unishivaji.ac.in, bos@unishivaji.ac.in

शिवाजी विद्यापीठ, कोल्हापूर -४१६००४,महाराष्ट्र

दूरध्वनी-ईपीएबीएक्स -२६०९०००, अभ्यासमंडळे विभाग दुरध्वनी ०२३१—२६०९०९४ ०२३१—२६०९४८७

SU/BOS/Science/09

Date: 02/01/2024

To,

The Principal,	The Head/Co-ordinator/Director
All Concerned Affiliated Colleges/Institutions	All Concerned Department (Science)
Shivaji University, Kolhapur	Shivaji University, Kolhapur.

Subject: Regarding syllabi of M.Sc. Part-II (Sem. III & IV) as per NEP-2020 (1.0) degree programme under the Faculty of Science and Technology.

Sir/Madam,

With reference to the subject mentioned above, I am directed to inform you that the university authorities have accepted and granted approval to the revised syllabi, nature of question paper and equivalence of M.Sc. Part-II (Sem. III & IV) as per NEP-2020 (1.0) degree programme under the Faculty of Science and Technology.

	M.ScII (Sem. III & IV) as per NEP-2020 (1.0)					
1.	Mathematics	9.	Gen Microbiology			
2.	Mathematics (Distance Mode)	10.	Pharmaceutical Microbiology (HM)			
3.	Mathematics (Online Mode)	11.	Alcohol Technology			
4.	MSc.(Mathematics With Computer Application)	12.	Sugar Technology			
5.	Statistics	13.	Geology			
6.	Applied Statistics and Informatics	14.	AGPM			
7.	Electronics	15.	Geoinformatics			
8.	Microbiology (HM)	16.	Physics			

This syllabus, nature of question and equivalence shall be implemented from the academic year 2024-2025 onwards. A soft copy containing the syllabus is attached herewith and it is also available on university website <u>www.unishivaji.ac.in,NEP-2020 (Online Syllabus).</u>

The question papers on the pre-revised syllabi of above-mentioned course will be set for the examinations to be held in October /November 2024 & March/April 2025. These chances are available for repeater students, if any.

You are, therefore, requested to bring this to the notice of all students and teachers concerned.

Thanking you,

Dy Registrar Dr. S. M. Kubal

Copy to:

1	The Dean, Faculty of Science & Technology	4	P.G Admission / Eligibility Section
2	The Chairman, Respective Board of Studies	5	Computer Centre/ Eligibility Section
3	B.Sc. Exam/ Appointment Section	6	Affiliation Section (U.G.) (P.G.)

SHIVAJI UNIVERSITY, KOLHAPUR

Established: 1962

A⁺⁺ Accredited by NAAC (2021) with CGPA 3.52

Structure and Syllabus in Accordance with

National Education Policy - 2020

with Multiple Entry and Multiple Exit

Master of Science (General Microbiology)

Sem. III & IV

under Faculty of Science and Technology

(To Be Implemented From Academic Year 2024-25)

Programme Structure

Structure in Accordance with National Education Policy - 2020 With Multiple Entry and Multiple Exit Options M.Sc. (General Microbiology) Part – II (Level-6.5)

	Course Code	Tea	ching Schem	e			Examination S	Scheme		
		Theor	ry and Practi			ersity Assessme			al Assessment	
		Lectures +	Hours	Credit	Maximum	Minimum	Exam. Hours	Maximum	Minimum	Exam.
		Tutorial	(Per		Marks	Marks		Marks	Marks	Hours
		(Per week)	week)							
	MMT 201	4	4	4	Semester-III	20	2	20	0	1
Major	MMT-301	4	4	4	80	32	3	-	8	1
Mandatory	MMT -302	4	4	4	80	32	3	20	8	1
Major	MME -303	4	4	4	80	32	3	20	8	1
Elective										
Practical	MMPR -304	4	4	4	80	32	3	20	8	1
Course	MEPR-305	2	2	2	40	14	2	10	4	0.5
Research	RP-306			4	80	32	3	20	8	1
Project										
Total of	Sem III			22	440			110		
					Semester-IV					
Major	MMT-401	4		4	80	32	3	20	8	1
Mandatory	MMT -402	4		4	80	32	3	20	8	1
Major	MME - 403	4		4	80	32	3	20	8	1
Elective										
Practical	MMPR -404	2	2	2	40	14	2	10	4	0.5
Course	MEPR-405	2	2	2	40	14	2	10	4	0.5
Research	RP-406			6	100	40	3	50	17	2
Project										
Total of	Sem IV			22	420			130		
Total (Sem III	+ Sem IV)			44	860			240		

MMT–MajorMandatory Theory	• Total Marks for M.ScII : 1100				
MMPR–MajorMandatoryPractical	• Total Credits for M.ScII (Semester III & IV) : 44				
MET–MajorElective Theory	• Separate passing is mandatory for University and Internal				
MEPR–MajorElective Practical	Examinations				
RP- Research Project					
# Evaluation scheme for Research Project shall be decided by concerned	d BOS				
## Evaluation scheme for Research Project shall be decided by concern	## Evaluation scheme for Research Project shall be decided by concerned BOS				
Requirement for Exit after Level 6.5:					
Students can exit after completion of Level 6.5 with Post Graduate in General Microbiology					

SHIVAJI UNIVERSITY KOLHAPUR M.Sc. GENERAL MICROBIOLOGY (For Affiliated Colleges) CURRICULAM FRAMEWORK BASED ON 'NATIONAL EDUCATION POLICY 2020

SEM III

Y	LE	Code	Code Title of the paper	Credits	Hrs/	Total	Maximum Marks		
E A R	V EL 6.5				week	Lecturs	Internal Assessment	Universi ty Examin ation	Total
I I			I	Major M	andato	ry Papers			
		MMT 301	Quantitative Biology	04	04	60	20	80	100
		MMT 302	Medical Microbiology and Virology	04	04	60	20	80	100
		MET 303-A	Bioethics, Biosafety, Quality control in Microbiology	04	04	60	20	80	100
		MET 303-B	Bioinformatics, Biostatistics and Bionanotechnology	04	04	60	20	80	100
		MET 303-C	Agricultural Microbiology	04	04	60	20	80	100
			Min	nor RP (Compu	lsory pape	er)		
		RP- 306	Research Project	04	04	60	20	80	100
				PRACT	ICAL CO	DURSES			
		MMP R-304	Practical course 1	04		60	20	80	100
		MEP R-305	Practical course 2	02		30	10	40	50

SEM IV

Y	LE	Code	ode Title of the paper	Credits	Hrs/	Total	Maximum Marks				
E A R	V EL 6.5				week	Lecturs	Internal Assessment	Universi ty Examin ation	Total		
[[· · · ·							
		MMT 401	Food and Dairy Microbiology	04	04	60	20	80	100		
		MMT 402	Molecular Biology Tools and Applications	04	04	60	20	80	100		
			Major Ele	ctive Pap	ers (CH	IOOSE A	NY ONE)				
		MET 403-A	Industrial Waste Management	04	04	60	20	80	100		
		MET 403-B	Enzymology and Enzyme Technology	04	04	60	20	80	100		
		MET 403-C	Clinical Microbiology	04	04	60	20	80	100		
		Minor RP (Compulsory paper)									
		RP- 406	Research Project	06	06	90	50	100	150		
		MEP R - 404	Practical course 1	02	02	30	10	40	50		
		MEP R- 405	Practical course 2	02	02	30	10	40	50		
			Total of Sem. IV				130	420	550		
			Total of M.Sc. Course						2200		

Assessment for Research Project 306:

Internal (institutional) assessment of the project RP-306:

Internal assessment of the project will be carried out in the Department where the candidate is registered for post graduate degree. This will be carried out as follow:

Item	Marks	Note
Presentation of the plan of	10	Should be carried out as open defense.
work		Any suggestions if are should be
		communicated to the guide.
Submission of completed	10	CD ROM should be submitted to the
work in the form of CD		University where the University may
ROM of dissertation copy		take appropriate decision for
along with 2 certified		forwarding it to Shodhganga.
bound copies		Note: Any work having conflicts of
		interest with respect to intellectual
		properties should not be published
		without permission of respective
		guide.
Total marks:		20

University Evaluation:

University evaluation will be carried out for 80 marks. This will be conducted as open defense presentation. For the purpose candidate is allowed to present the work through LCD Projector or any other alternative as available in the institute. In case of national emergencies, online presentation is allowed. For the purpose the candidate is allowed to use online meeting apps as allowed by the central government. For the purpose of the evaluation, external examiners appointed by university at the time of practical exam. One examiner will be external having adequate research experience and minimum qualification as Ph.D. For the purpose any senior academician / senior scientist working in institutes of national and international reputes / senior person working in industry / Entrepreneur with minimum qualification of Ph.D. in Microbiology may be appointed. Another examiner will be appointed from the institute where, the candidate has registered for his/her post graduate degree. Minimum qualification of the internal examiner should be Ph.D. in Microbiology.

Evaluation by External examiner:

Internal examiner as appointed above will evaluate the dissertation of the candidate for 80 marks. Following criteria should be used for evaluation purpose by internal examiner.

Sr. No.	Criteria	Maximum Marks	Obtained Marks
1.	Understanding the basic concept of dissertation	10	
2.	Fulfillment of Aims and objectives	10	
3.	Results, discussion and conclusion	10	
4.	Regularity and punctuality	10	
5.	Literature Review	10	
6.	Fulfillment of Plagiarism norms as per attached certificate	10	
7.	Publication of work	10	
8.	Potential Applications of the work /Social	10	
	relevance		
Total out	of 80		

Thus, project will be assessed for 100 marks.

Alternative to Internship / Research Project in case of national emergencies like Covid pandemics:

In case of national emergencies like Covid pandemics, following alternative should be followed vide cited references:

References:

- 1. Letter no. UNI/2020/Baithak/vishi 1/4131A dt. 8th May 2020, Pg. no. 6, clause no. 5
- 2. UGC Guidelines on Examinations and Academic Calendar for the Universities in View of COVID-19Pandemic and Subsequent Lockdown dt. April 2020, pg. no. 6 and 7, clause no 10.

Alternative No. 1:

Review article

Alternative No. 2:

Field work/Online Surveys related to needs of society having subject relevance/Book review

Note: Here, in case of national emergencies or lockdown period students are allowed to work from home and the work done under above titles will be considered for evaluation and grading purposes.

Explanation: 1. Review Article:

The criteria for awarding the marks are as follow:

Sr. No.	Criteria
1.	Selection of the topic considering social relevance
2.	Well organized abstract/ introduction
3.	Survey of the topic selected as evidenced through references
4.	Discussion of current developments in a selected field/ topic
5.	Summarizing significant findings of the present study
6.	Literature Review and the use of software like Mendeley to keep flexibility for publication and referencing style.
7.	Fulfillment of Plagiarism norms as per attached certificate
8.	Publication of work

2. Field work (Data Collection)/ online surveys: having subject relevance

Sr. No.	Criteria
1.	Selection of the topic considering social relevance
2.	Method followed for data collection
3.	Statistical analysis of the data
4.	Well organized abstract/ introduction
5.	Reference work
6.	Discussion of current developments in a selected field/ topic
7.	Summarizing significant findings of the present study
8.	Fulfillment of Plagiarism norms as per attached certificate
9.	Publication of work

OR

3. Book review: having subject relevance

Sr. No.	Criteria
1.	Name of the author and book with relevant details of publisher and publication
2.	Relevant information about the author like who the author is and where he/she
	stands in the genre or the field of enquiry.
3.	Context of the book
4.	Brief discussion about the theme of book
5.	Strengths and weaknesses of the book
6.	Highlighting parts of the book by selecting particular chapter/ theme for the
	justification of review
7.	Concluding remarks about books overall perspective, argument and purpose
8.	Plagiarism check report

Evaluation:

Internal evaluation for the alternative that is, submitting review article and field work /survey / book review will be carried out as follow:

Online presentations through central government approved apps

Presentation based on review article (1)

Presentation based on field work/ survey / book reviews (2 presentations each of 20 marks) Total marks **IMP Note:** The candidate has to submit the project report before the deadlines notified by the department. The candidate who fails to submit the project report may re-submit the same in a subsequent semester examination for evaluation purpose. The project work activities must be duly supported by documentary evidences and those should be endorsed by the HOD or the guide. All forthcoming UGC notifications regarding promotion of academic integrity and prevention of plagiarism in higher education institutions will be binding to the students **SEE ANNEXURE I (DECLARATION BY THE CANDIDATE)**. Submitted thesis by the students will be evaluated by, 'Departmental Academic Integrity Panel (DAIP)' and will be certified to be eligible for further evaluation as mentioned above. **SEE ANNEXURE II (DAIP CERTIFICATE)**

Award of the Grade will be based on the following criteria.

Guidelines for conducting RP- 406 Research Project in Sem IV of the curriculum

- 1. RP 406 research project should be completed minimum of 90 hours.
- 2. The research project may be completed in research laboratories, industries, National Incubation Centers, research institutes, public testing laboratories, diagnostic laboratories, etc. The candidates who are not getting an opportunity in cited categories may complete their research in the department of their parent institute.

Assessment for Research Project :

The project shall carry 150 marks. The assessment for the said courses should be carried out as follows:

out as follows;

a. Assessment by Research Guide: The entire project will be assessed by research

guide for 50 marks. Criteria used for the assessment are as follow:

(Confidential and to be sent through with signed sealed envelope by research guide) SEE ANNEXURE III (CERTIFICATE OF GUIDE)

Sr. No.	Criteria	Maximum Marks	Obtained Marks
1.	Understanding the basic concept of dissertation	05	
2.	Fulfillment of Aims and objectives	05	
3.	Results, discussion and conclusion	10	
4.	Regularity and punctuality	10	
5.	Literature Review	05	
6.	Fulfillment of Plagiarism norms as per attached certificate	05	
7.	Publication of work	05	
8.	Potential Applications of the work /Social relevance	05	
Total out	of 50		

Note: Respective research guide should submit weekly progress report to the head of the department through official mail. Signed print copies of the progress report are also accepted.

Evaluation by external examiner:

External examiner as appointed above will evaluate the dissertation of the candidate for 100 marks. Following criteria should be used for evaluation purpose by external examiner.

Sr. No.	Criteria	Maximum	Obtained
		Marks	Marks
1.	Understanding the basic concept of dissertation	10	
2.	Fulfillment of Aims and objectives	10	
3.	Results, discussion and conclusion	10	
4.	Regularity and punctuality	10	
5.	Literature Review	10	
6.	Fulfillment of Plagiarism norms as per attached	10	
	certificate		
7.	Publication of work (Conference presentation /	20	
	Research Paper in Journal)		
8.	Potential Applications of the work /Social	20	
	relevance		
Total out	of 100		

	Semester III	
Credits	MMT-301: Quantitative Biology	Lectures
	Core Compulsory Theory Paper	(Hours)
	Total: 4 Credits; Workload: -15 hrs /credit	
	(Total Workload: - 4 credits x 15 hrs = 60 hrs in semester)	
	Course outcome:	
	At the end of this course the students will be able to:	
	1. Understand role of statistics in biological field especially in	
	research.	
	2. Understand application of different statistical parameters.	
	3. Understand the use of computer softwares for analysis of	
	biological data.	
	4. Understand role of different statistical test for validation of	
	experimental data	
	5. Understand quantitative methods used in pharmaceutical and	
	food industry	
Ι	1. Basic concepts: definitions – statistics and	15
	biostatistics, population, sample, variable and the	
	various types, statistic and parameter.	
	2. Collection and presentation of data: primary and	
	secondary data, collection of data – enumeration and	
	measurement, significant digits, rounding of data,	
	accuracy and precision, recording of data. Tabular and	
	diagrammatic presentation – arrays, frequency	
	distribution, bar diagrams, histograms and frequency	
	polygons.	
	3. Descriptive statistics: measures of central tendency,	
	dispersion, skewness and kurtosis	
	4. Probability : definition, elementary properties, types,	
	rules, applications to biological problems, distributions	
	– Binomial, Poisson, Normal, chi-square ($\chi 2$)	
	distribution and test.	
	5. Sampling methods: principles of sampling, necessity –	
	merits and demerits, random sampling – lottery,	
	geographical arrangement random number; deliberate	
	or non-random sampling, stratified sampling, cluster	
	sampling	
II	1. Inference about populations: sample size, sampling	15
	distribution, standard error, estimation of population	
	mean - confidence interval, Student's <i>t</i> - distribution and	
	its applications (<i>t</i> - test).	
	2. Hypothesis testing: definition of hypothesis,	
	hypotheses - null and alternate hypotheses, general	
	procedure, decision about H0: – one-tailed and two-	
	tailed tests, type I and type II errors	
	3. Analysis of Variance (ANOVA): basic concepts,	
	experimental designs – CRD, RBD, factorial	
	1 0	
	experiment, repeated measures, other designs, general	
	method, F – test, multiple comparison tests.	
	4. Correlation : introduction, types, methods of study –	
	scatter diagram, correlation graph, Karl Pearson's	
	coefficient of correlation and its interpretation, test of	
	significance.	

	5. Regression : introduction, simple linear regression -	
	model, equation, least-squares line, evaluating and using	
	the equation, multiple regression – model, obtaining,	
	evaluating and using the multiple regression equation.	
III	Bioinformatics	15
	1. Basic concepts of Bioinformatics: Definition, Role of	
	bioinformatics in life science, Importance, Analytical	
	approach, and Applications	
	2. Biological Sequence Databases: Sequence database,	
	Nucleotide sequence database, Protein Sequence Database,	
	Medical Databases, Genebank, Swiss port, structure database	
	and motif database.	
	3. Bioinformatics tools and applications:	
	a. Tools in Bioinformatics: Pairwise alignment, Scoring	
	Matrices, PAM Matrices, Blosum Matrices, Nucleotide	
	Scoring Matrices, Gaps and Gap Penalties, Alignment	
	algorithm (BLAST and FASTA) and EMBOSS.	
	b. Protein Structure Prediction: Secondary structure	
	prediction, tertiary structure prediction, comparative	
	modeling, RASMOL, and protein function prediction	
	4. Emerging areas in Bioinformatics:	
	DNA microarrays, Metabolomics, Pharmacogenomics, and	
	Human genome project	
IV	Quantitative methods in pharmaceutical and food	15
1 *	1. Bioburden determination: Introduction ; Total Microbial	15
	Count, Traditional counting Methods, Detection of	
	objectionable organisms, Non-sterile products and microbial	
	5 C 1	
	limit testing;	
	2. In process material bioburden assessment; Microbiological	
	analysis of raw materials and finished products-Microbial	
	count limit for finished products.	
	3. Probability and kinetic models for food processing and	
	НАССР	
	a. Probability of growth models	
	b. Growth kinetic models	
	4. Thermal Inactivation	

- 1. Biostatistics A foundation for Analysis in the Health Sciences, by Wayne Daniel (7th Ed) Wiley- India edition
- 2. Biostatistics by N. Gurumani MJP Publishers

- 3. Statistical Methods for the Analysis of Repeated Measurements by C. S. Davis
- 3. Statistical Method in Biological Assays by D. J. Finney
- 4. Statistical Methods for Rates and Proportions by Fleiss, Joseph L., Levin Bruce and Paik Myunghee Cho
- 5. Fundamentals of Biostatistics (2nd Ed) Irfan Ali Khan and Atiya Khanum, Ukaaz Publications, Hyderabad.
- 6. Design and analysis of experiments by D.C. Montgomery, John Wiley &Sons.
- 7. Sampling methods by M.N. Murthy, Indian Statistical Institute, Kolkata.
- 8. Baxevanis, A. D., Bader, G. D., & Wishart, D. S. (Eds.). (2020). Bioinformatics. John Wiley & Sons.
- 9. Higgins, D., & Taylor, W. (Eds.). (2000). Bioinformatics: Sequence, Structure and Databanks: A Practical Approach (Vol. 236). OUP Oxford.
- 10. Murthy, C. S. V. Bioinformatics, Himalaya Publication House
- 11. Baxevanis, A. D., and Ouellette B. F. F Bioinformatics, A Practical Guide to the analysis of Genes and proteins.
- 12. Westhead D. R., Parish J. H., and Twyman R. M. Instant Notes of Bioinformatics
- 13. Geoff Hanlon and Norman Hodges- Essential Microbiology for Pharmacy and Pharmaceutical Science, John Wiley & Sons, Ltd.
- 14. Tim Sandle Pharmaceutical Microbiology- Essentials for Quality Assurance and Quality Control, Woodhead Publishing publications, Elsevier.
- 15. Quantitative Microbiology in Food Processing Modeling the Microbial Ecology Edited by Anderson de Souza Sant'Ana Department of Food Science, University of Campinas, Brazil

	Semester III	
Credit	MMT 302: Medical Microbiology and Virology	Lectures
	Core Compulsory Theory Paper	(Hours)
	Total: 4 Credits; Workload: -15 hrs /credit	
	(Total Workload: - 4 credits x 15 hrs = 60 hrs in semester)	
	Course Outcomes:	
	At the end of this course the students will be able to:	
	1. Understand the new ways of microbial colonization during development of diseases.	
	2. Learn the measurement of infectivity and virulence	
	3. Understand the role of exotoxins in disease development and	
	cosmetic uses of exotoxins	
	4. Will know about emerging viral diseases and fungal diseases	
Ι	1. Emerging and Reemerging Infectious diseases: Types (New-	15
	New diseases, New-old diseases, Old-new diseases, Old-old	
	diseases)	
	2. Modern medicine as a source of New diseases	
	3. Microbiota shift diseases	
	4. Germ warfare	
	5. Concept of 'Opportunist' and 'Continuum' in the development	
	of diseases.	
	6. Measuring Infectivity and Virulence:	
	i) Animal Models:	
	Human volunteers	
	Non human animal models	

• Tissue culture models Organ culture models II 1. Colonization and Invasion of bacteria in host surfaces: 15 • Penetrating Mucin layer • Resisting Antibacterial peptides 15 • Adherence (Role of Adherence, ,pili and fimbriae, signal transduction, adhesins of Gram positive bacteria, Afimbrial adhesins) 5 SIgA Proteases 15 • Iron Acquisition mechanisms 2. Common means of colonization of respiratory viruses 15 III 1. Bacterial Exotoxins: 15 • Characteristics and Nomenclature • Exotoxin structure and Functions (A-B / Type III Toxins, Superantigens /Type I Toxins) 15 • Secretion and Excretion of Exotoxins 2. Exotoxin Induced Diseases 15 • Diphtheria • Botulism • Botulism • Botulism • Medical and cosmetic uses of bacterial exotoxins 15 IV 1. Emerging viruses challenging health management in India: 15 • SARS-Cov-2 • Nipah 2 Zika 15 • Zika • Kyasanur Forest Disease Virus (KFDV) • Adeno virus 2. Fungal Diseases: • Eitology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, • Superficial Mycosis: Pityriasis • Subcutaneous Mycoses : Mycetoma		• ID50 and LD50	
• Organ culture models 15 II 1. Colonization and Invasion of bacteria in host surfaces: 15 • Penetrating Intact skin • Penetrating Mucin layer 15 • Resisting Antibacterial peptides • Adherence (Role of Adherence, .pili and fimbriae, signal transduction, adhesins of Gram positive bacteria, Afimbrial adhesins) • SIgA Proteases • • Iron Acquisition mechanisms 2. Common means of colonization of respiratory viruses 15 III 1. Bacterial Exotoxins: 15 • Characteristics and Nomenclature • Exotoxin structure and Functions (A-B / Type III Toxins, Superantigens /Type I Toxins) • Secretion and Excretion of Exotoxins 2. Exotoxin Induced Diseases • Diphtheria • Tetanus • Botulism • Medical and cosmetic uses of bacterial exotoxins IV 1. Emerging viruses challenging health management in India: • SARS-Cov-2 • Nipah · Zika • Kyasanur Forest Disease Virus (KFDV) • Adeno virus 2. Fungal Diseases: Etology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, • Superficial Mycosis: Pityriasis • Subcutaneous Mycoses : Mycetoma • Superficial Mycosis: Pityriasis			
II 1. Colonization and Invasion of bacteria in host surfaces: 15 • Penetrating Intact skin • Penetrating Mucin layer 15 • Resisting Antibacterial peptides • Adherence (Role of Adherence, .pili and fimbriae, signal transduction, adhesins of Gram positive bacteria, Afimbrial adhesins) • SIgA Proteases • Iron Acquisition mechanisms 2. Common means of colonization of respiratory viruses 15 III 1. Bacterial Exotoxins: 15 • Characteristics and Nomenclature • Exotoxin structure and Functions (A-B / Type III Toxins, Superantigens /Type I Toxins) 15 • Secretion and Excretion of Exotoxins 2. Exotoxin Induced Diseases • Diphtheria • Diphtheria • Tetanus 8 Botulism • Medical and cosmetic uses of bacterial exotoxins 15 IV 1. Emerging viruses challenging health management in India: 15 • Kyasanur Forest Disease Virus (KFDV) • Adeno virus 15 • Superficial Mycosis: Pityriasis • Superficial Mycosis: Pityriasis 5			
Image: Penetrating Mucin layerResisting Antibacterial peptidesAdherence (Role of Adherence, .pili and fimbriae, signal transduction, adhesins of Gram positive bacteria, Afimbrial adhesins)SIgA ProteasesIron Acquisition mechanisms2. Common means of colonization of respiratory virusesIII1. Bacterial Exotoxins:• Exotoxin structure and Functions (A-B / Type III Toxins, Membrane disrupting/ Type II Toxins, Superantigens /Type I Toxins)• Secretion and Excretion of Exotoxins2. Exotoxin Induced Diseases• Diphtheria• Tetanus• Botulism• Medical and cosmetic uses of bacterial exotoxinsIV1. Emerging viruses challenging health management in India:• SARS-Cov-2• Nipah• Zika• Kyasanur Forest Disease Virus (KFDV)• Adeno virus2. Fungal Diseases:Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of,• Superficial Mycosis: Pityriasis• Subcutaneous Mycoses : Mycetoma	II		15
Image: Penetrating Mucin layerResisting Antibacterial peptidesAdherence (Role of Adherence, .pili and fimbriae, signal transduction, adhesins of Gram positive bacteria, Afimbrial adhesins)SIgA ProteasesIron Acquisition mechanisms2. Common means of colonization of respiratory virusesIII1. Bacterial Exotoxins:• Exotoxin structure and Functions (A-B / Type III Toxins, Membrane disrupting/ Type II Toxins, Superantigens /Type I Toxins)• Secretion and Excretion of Exotoxins2. Exotoxin Induced Diseases• Diphtheria• Tetanus• Botulism• Medical and cosmetic uses of bacterial exotoxinsIV1. Emerging viruses challenging health management in India:• SARS-Cov-2• Nipah• Zika• Kyasanur Forest Disease Virus (KFDV)• Adeno virus2. Fungal Diseases:Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of,• Superficial Mycosis: Pityriasis• Subcutaneous Mycoses : Mycetoma		• Penetrating Intact skin	
 Resisting Antibacterial peptides Adherence (Role of Adherence, ,pili and fimbriae, signal transduction, adhesins of Gram positive bacteria, Afimbrial adhesins) SIgA Proteases Iron Acquisition mechanisms Common means of colonization of respiratory viruses III Bacterial Exotoxins: Characteristics and Nomenclature Exotoxin structure and Functions (A-B / Type III Toxins, Superantigens /Type I Toxins) Secretion and Excretion of Exotoxins Exotoxin Induced Diseases Diphtheria Tetanus Botulism Medical and cosmetic uses of bacterial exotoxins Is Emerging viruses challenging health management in India: SARS-Cov-2 Nipah Zika Kyasanur Forest Disease Virus (KFDV) Adeno virus Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, Superficial Mycosis: Pityriasis Subcutaneous Mycoses : Mycetoma 			
 Adherence (Role of Adherence, ,pili and fimbriae, signal transduction, adhesins of Gram positive bacteria, Afimbrial adhesins) SIgA Proteases Iron Acquisition mechanisms Common means of colonization of respiratory viruses Bacterial Exotoxins: Bacterial Exotoxins: Characteristics and Nomenclature Exotoxin structure and Functions (A-B / Type III Toxins, Membrane disrupting/ Type II Toxins, Superantigens /Type I Toxins) Secretion and Excretion of Exotoxins Exotoxin Induced Diseases Diphtheria Tetanus Botulism Medical and cosmetic uses of bacterial exotoxins If SARS-Cov-2 Nipah Zika Kyasanur Forest Disease Virus (KFDV) Adeno virus Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, Superficial Mycosis: Pityriasis Subcutaneous Mycoses : Mycetoma 			
transduction, adhesins of Gram positive bacteria, Afimbrial adhesins)ISIgA ProteasesIron Acquisition mechanismsCommon means of colonization of respiratory virusesIII1. Bacterial Exotoxins:• Characteristics and Nomenclature • Exotoxin structure and Functions (A-B / Type III Toxins, Membrane disrupting/ Type II Toxins, Superantigens /Type I Toxins)• Secretion and Excretion of Exotoxins2. Exotoxin Induced Diseases• Diphtheria • Tetanus • Botulism • Medical and cosmetic uses of bacterial exotoxinsIV1. Emerging viruses challenging health management in India: • Kyasanur Forest Disease Virus (KFDV) • Adeno virus• Kyasanur Forest Disease Virus (KFDV) • Adeno virus• Superficial Mycosis: Pityriasis • Subcutaneous Mycoses : Mycetoma			
bacteria,Afimbrial adhesins)bacteria,Afimbrial adhesins)• SIgA Proteases• Iron Acquisition mechanisms2. Common means of colonization of respiratory viruses15III1. Bacterial Exotoxins:15• Characteristics and Nomenclature• Exotoxin structure and Functions (A-B / Type III Toxins, Membrane disrupting/ Type II Toxins, Superantigens /Type I Toxins)15• Secretion and Excretion of Exotoxins2. Exotoxin Induced Diseases15• Diphtheria • Tetanus • Botulism • Medical and cosmetic uses of bacterial exotoxins15IV1. Emerging viruses challenging health management in India: • SARS-Cov-2 • Nipah • Zika • Kyasanur Forest Disease Virus (KFDV) • Adeno virus152. Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, • Superficial Mycosis: Pityriasis • Subcutaneous Mycoses : Mycetoma15			
 SIgA Proteases Iron Acquisition mechanisms Common means of colonization of respiratory viruses Bacterial Exotoxins: Characteristics and Nomenclature Characteristics and Nomenclature Exotoxin structure and Functions (A-B / Type III Toxins, Membrane disrupting/ Type II Toxins, Superantigens /Type I Toxins) Secretion and Excretion of Exotoxins Exotoxin Induced Diseases Diphtheria Tetanus Botulism Medical and cosmetic uses of bacterial exotoxins IN 1. Emerging viruses challenging health management in India: SARS-Cov-2 Nipah Zika Kyasanur Forest Disease Virus (KFDV) Adeno virus Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, Superficial Mycosis: Pityriasis Subcutaneous Mycoses : Mycetoma 		-	
 Iron Acquisition mechanisms Common means of colonization of respiratory viruses Bacterial Exotoxins: Bacterial Exotoxins: Characteristics and Nomenclature Exotoxin structure and Functions (A-B / Type III Toxins, Membrane disrupting/ Type II Toxins, Superantigens /Type I Toxins) Secretion and Excretion of Exotoxins Exotoxin Induced Diseases Diphtheria Tetanus Botulism Medical and cosmetic uses of bacterial exotoxins IN 1. Emerging viruses challenging health management in India: SARS-Cov-2 Nipah Zika Kyasanur Forest Disease Virus (KFDV) Adeno virus Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, Superficial Mycosis: Pityriasis Subcutaneous Mycoses : Mycetoma 			
2. Common means of colonization of respiratory viruses III 1. Bacterial Exotoxins: III 1. Characteristics and Nomenclature Exotoxin structure and Functions (A-B / Type III Toxins, Membrane disrupting/ Type II Toxins, Superantigens /Type I Toxins) Secretion and Excretion of Exotoxins 2. Exotoxin Induced Diseases Diphtheria Tetanus Botulism Medical and cosmetic uses of bacterial exotoxins IV 1. Emerging viruses challenging health management in India: SARS-Cov-2 Nipah Zika Kyasanur Forest Disease Virus (KFDV) Adeno virus 2. Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, Superficial Mycosis: Pityriasis Subcutaneous Mycoses : Mycetoma			
III 1. Bacterial Exotoxins: 15 • Characteristics and Nomenclature • Exotoxin structure and Functions (A-B / Type III Toxins, Membrane disrupting/ Type II Toxins, Superantigens /Type I Toxins) 15 • Secretion and Excretion of Exotoxins 2. Exotoxin Induced Diseases 16 • Diphtheria • Tetanus 16 • Botulism • Medical and cosmetic uses of bacterial exotoxins 15 IV 1. Emerging viruses challenging health management in India: 15 • SARS-Cov-2 • Nipah 2ika • Kyasanur Forest Disease Virus (KFDV) • Adeno virus 2. Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, • Superficial Mycosis: Pityriasis • Subcutaneous Mycoses : Mycetoma		-	
 Exotoxin structure and Functions (A-B / Type III Toxins, Membrane disrupting/ Type II Toxins, Superantigens /Type I Toxins) Secretion and Excretion of Exotoxins Exotoxin Induced Diseases Diphtheria Tetanus Botulism Medical and cosmetic uses of bacterial exotoxins IV Emerging viruses challenging health management in India: SARS-Cov-2 Nipah Zika Kyasanur Forest Disease Virus (KFDV) Adeno virus Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, Superficial Mycosis: Pityriasis Subcutaneous Mycoses : Mycetoma 	III		15
Toxins, Membrane disrupting/ Type II Toxins, Superantigens /Type I Toxins)Secretion and Excretion of ExotoxinsExotoxin Induced DiseasesDiphtheriaTetanusBotulismMedical and cosmetic uses of bacterial exotoxinsIV1. Emerging viruses challenging health management in India:SARS-Cov-2NipahZikaKyasanur Forest Disease Virus (KFDV)Adeno virus2. Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, Superficial Mycosis: Pityriasis Subcutaneous Mycoses : Mycetoma		Characteristics and Nomenclature	
Toxins, Membrane disrupting/ Type II Toxins, Superantigens /Type I Toxins)Secretion and Excretion of ExotoxinsExotoxin Induced DiseasesDiphtheriaTetanusBotulismMedical and cosmetic uses of bacterial exotoxinsIV1. Emerging viruses challenging health management in India:SARS-Cov-2NipahZikaKyasanur Forest Disease Virus (KFDV)Adeno virus2. Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, 		• Exotoxin structure and Functions (A-B / Type III	
Superantigens /Type I Toxins) Secretion and Excretion of Exotoxins Exotoxin Induced Diseases Diphtheria Tetanus Botulism Medical and cosmetic uses of bacterial exotoxins IV 1. Emerging viruses challenging health management in India: SARS-Cov-2 Nipah Zika Kyasanur Forest Disease Virus (KFDV) Adeno virus Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, Superficial Mycosis: Pityriasis Subcutaneous Mycoses : Mycetoma			
2. Exotoxin Induced Diseases Diphtheria • Diphtheria Tetanus • Botulism Botulism • Medical and cosmetic uses of bacterial exotoxins 15 IV 1. Emerging viruses challenging health management in India: 15 • SARS-Cov-2 Nipah Zika • Kyasanur Forest Disease Virus (KFDV) Adeno virus 2. Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, • Superficial Mycosis: Pityriasis • Subcutaneous Mycoses : Mycetoma			
 Diphtheria Tetanus Botulism Medical and cosmetic uses of bacterial exotoxins IV Emerging viruses challenging health management in India: SARS-Cov-2 Nipah Zika Kyasanur Forest Disease Virus (KFDV) Adeno virus Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, Superficial Mycosis: Pityriasis Subcutaneous Mycoses : Mycetoma 		Secretion and Excretion of Exotoxins	
 Tetanus Botulism Medical and cosmetic uses of bacterial exotoxins IV Emerging viruses challenging health management in India: SARS-Cov-2 Nipah Zika Kyasanur Forest Disease Virus (KFDV) Adeno virus Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, Superficial Mycosis: Pityriasis Subcutaneous Mycoses : Mycetoma 		2. Exotoxin Induced Diseases	
 Botulism Medical and cosmetic uses of bacterial exotoxins IV Emerging viruses challenging health management in India: SARS-Cov-2 Nipah Zika Kyasanur Forest Disease Virus (KFDV) Adeno virus Fungal Diseases:		• Diphtheria	
 Medical and cosmetic uses of bacterial exotoxins IV Emerging viruses challenging health management in India: SARS-Cov-2 Nipah Zika Kyasanur Forest Disease Virus (KFDV) Adeno virus Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, Superficial Mycosis: Pityriasis Subcutaneous Mycoses : Mycetoma 		• Tetanus	
IV1. Emerging viruses challenging health management in India:15• SARS-Cov-2• Nipah-• Nipah• Zika• Kyasanur Forest Disease Virus (KFDV)-• Adeno virus-2. Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, • Superficial Mycosis: Pityriasis • Subcutaneous Mycoses : Mycetoma-		• Botulism	
 SARS-Cov-2 Nipah Zika Kyasanur Forest Disease Virus (KFDV) Adeno virus 2. Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, Superficial Mycosis: Pityriasis Subcutaneous Mycoses : Mycetoma 		Medical and cosmetic uses of bacterial exotoxins	
 SARS-Cov-2 Nipah Zika Kyasanur Forest Disease Virus (KFDV) Adeno virus 2. Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, Superficial Mycosis: Pityriasis Subcutaneous Mycoses : Mycetoma 	IX /	1 Emerging viewees challenging health management in India:	15
 Nipah Zika Kyasanur Forest Disease Virus (KFDV) Adeno virus 2. Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, Superficial Mycosis: Pityriasis Subcutaneous Mycoses : Mycetoma 	1 V		15
 Zika Kyasanur Forest Disease Virus (KFDV) Adeno virus Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, Superficial Mycosis: Pityriasis Subcutaneous Mycoses : Mycetoma 			
 Kyasanur Forest Disease Virus (KFDV) Adeno virus Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, Superficial Mycosis: Pityriasis Subcutaneous Mycoses : Mycetoma 		_	
 Adeno virus 2. Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, Superficial Mycosis: Pityriasis Subcutaneous Mycoses : Mycetoma 			
 2. Fungal Diseases: Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, Superficial Mycosis: Pityriasis Subcutaneous Mycoses : Mycetoma 		•	
 Etiology, Clinical features, Pathogenesis, Laboratory diagnosis, Prevention and Control of, Superficial Mycosis: Pityriasis Subcutaneous Mycoses : Mycetoma 			
 Prevention and Control of, Superficial Mycosis: Pityriasis Subcutaneous Mycoses : Mycetoma 			
Superficial Mycosis: PityriasisSubcutaneous Mycoses : Mycetoma			
Subcutaneous Mycoses : Mycetoma			
		Systemic Mycoses: Mucormycosis	

- 1. Bacterial Pathogenesis A Molecular Approach Part 2, Abigail A. Salyers and Dixie D. Whitt (Unit I , II. III)
- 2. Clinical Virology Editors Douglas D Richman, Richard J. Whitley, Fredrick G. Hayden, ASM Press, Washington DC
- 3. Medical Microbiology, 13th Edition by E. Jawetz, J. L. Melnick, E. A. Adelberg (Unit III and IV)
- 4. Medical Microbiology, 6th Edition by S. Gupte, Jaypee Brothers Publications (Unit III and IV)
- 5. Medical Microbiology, by W. Irving, T. Boswell and D. Aladeen (Unit III and IV)

- 6. Medical Microbiology, by R. Cruickshank, J. P. Duguid, B. P. Marmion, R. H. A. Swain (Unit III and IV)
- 7. The Textbook of Microbiology, by R. C. Dubey and D. K. Maheshwari (Unit III and IV)
- 8. Text book of Microbiology by R. Vasanthkumari (Unit III and IV)
- 9. Medical Microbiology by S. Rajan MJP Publishers (Unit III and IV)

MET 303 A: Bioethics, Biosafety, Quality control in Microbiology

	Semester III	
Credit	MET 303 A: Bioethics, Biosafety, Quality control in Microbiology	Lectures (Hours)
	Total: 4 Credits; Workload: -15 hrs /credit (Total Workload: - 4 credits x 15 hrs = 60 hrs in semester)	
	Course Outcomes: At the end of this course the students will be able to:	
	1. Understand bioethics in microbiology	
	2. Ensure and follow good microbiological practices	
	3. Maintain biological safety in the laboratory	
	4. Understand role of microbiologist in pharmaceutical industry	
Ι	Bioethics	15
	1. Introduction, definitions and history	
	2. Ethical issues in microbiology – Introduction, Guidelines/codes of ethics	
	3. Bioethics and microbiology, biowar or bioterrorism, biological weapons.	
	4. Ethics in drug discovery and development - laboratory studies and location of clinical trials, timing of ethics	
	5. Special ethical topics in drug discovery and development – laboratory animal, clinical studies in special risk groups, surrogate markers, phamrmacogenomics, research using human cells.	
	6. Ethical aspects in Pharmaceutical clinical trials – History, informed consent, ethics committees	
II	Cood migrobiological laboratory techniques	15
	 Good microbiological laboratory techniques – 1. Safe handling of specimens in the laboratory; Use of pipettes; Avoiding the dispersal of infectious materials; Use of biological 	
	safety cabinets; Avoiding ingestion of infectious materials and contact with skin and eyes; Opening of ampoules containing	
	lyophilized infectious materials; Storage of ampoules containing infectious materials; Standard precautions with blood and other	
	body fluids, tissues and excreta;2. Contingency plans and Emergency procedures for microbiological	
	laboratories.	1 -
III	 Microbiological risk assessment Biological safety cabinets - Class I biological safety cabinet; Class II biological safety cabinets; Class III biological safety cabinet; 	15
	 Biological safety cabinets, Class III biological safety cabinet, Biological safety cabinet air connection; 2. Selection of a biological safety cabinet; 	
	 Selection of a biological safety cabinet, Using biological safety cabinets in the laboratory. 	
	 4. Safety equipment - Negative-pressure flexible-film isolators; Pipetting aids; Homogenizers, shakers, blenders and sonicators; 	

	Disposable transfer loops; Micro incinerators; Personal protective equipment and clothing.	
IV	 Quality Management Systems in Pharmaceutical Manufacturing 1. Introduction; Pharmaceutical Quality System; 2. Good Manufacturing procedures – Specifications, Batch Manufacturing records, Standard Operating Procedures; 3. Validation- validation master plan, Qualifications and its types, GMP Inspections; 4. Hazard Analysis and Critical ControlPoint (HACCP) - Definition, Principles and Guidelines for application of HACCP principles. 5. Auditing the microbiology laboratory- Introduction; Record keeping – Batch Manufacturing Record; Quality audits; Auditors 	15
	and the audit process; Auditing the microbiology laboratory	

- 1. Sam Salek and Andrew Edgar Pharmaceutical ethics; 2002 John Wiley & Sons, Ltd. ISBNs: 0-471-49057-1 (Hardback); 0-470-85582-7 (Electronic)
- 2. Ethical issues in microbiology by P Desikan, A Chakrabarti, V Muthuswamy Indian Journal of Medical Microbiology, (2011) 29(4): 327-30
- 3. https://www.britannica.com/topic/bioethics#ref251763
- 4. Anaya-Velázquez F. Bioethics, bioweapons and the microbiologist. Rev Latinoam Microbiol. 2002 Jan-Mar; 44(1):38-45. PMID: 17061514.
- 5. Geoff Hanlon and Norman Hodges Essential Microbiology for Pharmacy and Pharmaceutical Science, John Wiley & Sons, Ltd.
- 6. Tim Sandle Pharmaceutical Microbiology Essentials for Quality Assurance and QualityControl, Woodhead Publishing publications, Elsevier.
- 7. Laboratory biosafety manual. 3rd ed. WHO Library Cataloguing-in-Publication Data ISBN9241546506.
- 8. Environmental Monitoring for cleanrooms and Controlled environments by Anne MarieDixon, Informa Healthcare Newyork, London, ISBN 13;978-0-8247-2359-0.
- 9. Cleanroom Microbiology for the non-Microbiologists, Second Ed, by Devid M. Carlbarg,CRC Press,USA.

MET 303 B: Bioinformatics, Biostatistics and Bionanotechnology

	Semester III	
Credit	Total: 4 Credits; Workload: -15 hrs /credit	Lectures
	(Total Workload: - 4 credits x 15 hrs = 60 hrs in semester)	(Hours)
	Course Outcomes:	
	At the end of this course the students will be able to:	
	1. Learn basic tools of the bioinformatics	
	2. Implement statistical approaches in microbiological experiments	
	3. Understand applications of nanotechnology in life sciences	
	4. Familiar with analytical tools and their applications.	
I	Bioinformatics	15
	1. Definition and components , databases – definition, biological	
	databases, types and examples, database management systems	
	(DBMS)	
	2. Applications of bioinformatics –	

	3. Data visualisation – sequence and structure of nucleic acids	
	and proteins, data visualisation tools.	
	4. Pattern matching and sequence alignment of nucleic acids	
	and proteins – fundamental principles of pairwise sequence	
	alignment, local and global alignment, multiple sequence	
	alignment, sequence alignment tools and databases.	
	5. Modeling and Simulation – components and process of	
	modeling and simulation, algorithms – Monte Carlo,	
	Metropolis, methods and tools used for proteins structure	
	(secondary, motifs and domains).	
	6. Phylogenetic analysis: basic principles and methods of	
	preparation of phylogenetictrees.	
	7. Drug discovery and development: fundamental principles,	
	rational drug design, chemoinformatics and pharmainformatics	
	resources, pharmacogenomics	
	Biostatistics	15
II	Basic concepts: definitions – statistics and biostatistics,	
	population, sample, variable and the various types, statistic	
	and parameter	
	Demography	
	1. Definition, Census, Vital statistics	
	2. Population projection,	
	3. Population growth and Estimation	
	4. Vital statistics rate	
	Bionanotechnology	15
III	1. Nanotechnology: Basic concepts, definition, Historical	
	background	
	C	
	2. Synthesis methods: Top-Down and Bottom-Up Approach-	
	Physical, chemical and biological synthesis methods,	
	3. Nanobiotechnology- Introduction, Green synthesis- Microbial	
	synthesis (Bacteria, Fungi, Algae, Virus)	
	4. Analysis of Nanomaterials: Methods and characterization	
	techniques-UV-Visible spectroscopy, FT-IR Spectroscopy, X-	
	ray Crystallography, Dynamic Light Scattering (DLS)	
	spectroscopy, Zeta potential spectroscopy, Energy Dispersive	
	X-Ray Analysis (EDAX), Transmission Electron Microscope	
	(TEM), Scanning Electron Microscope (SEM), Scanning	
	Tunneling Microscope (STM), Atomic Force Microscope	
	(AFM)	
	Bionanotechnology	15
IV	1. Agricultural Applications: Nanopesticides, Nanofertilizers,	
	Stress nanosensor	
	2. Bio-remedial Applications: Adsorption and Degradation of	
	dyes, organic compounds, Pesticides, Heavy metal removal	
	3. Healthcare Application: Diagnosis, Drug design and Drug	
	Delivery, Gene Delivery Antimicrobial and Wound Healing	
	Activity, Antitumor and Anticancer, Bioimaging,	
	4. Toxicity: Toxicity towards Human, Plant and Environment	
	5. Challenges for Bionanothechnology: Medicine, Food,	
	Environment	

BIOSTATISTICS

- 1. Biostatistics A foundation for Analysis in the Health Sciences, by Wayne
- 2. Daniel (7th Ed) Wiley- India edition
- 3. Biostatistics by N. Gurumani MJP Publishers
- 4. Statistical Methods for the Analysis of Repeated Measurements by C. S.Davis **BIOINFORMATICS**
- 1. Bioinformatics: A Beginner's Guide by Jean-Michel Claverie and C. Notredame (2003), Wiley Dreamtech India (P) Ltd., New Delhi 110 002
- 2. Elementary Bioinformatics by I. A. Khan (2005), Pharma Book Syndicate, Hyderabad
- 3. Bioinformatics Computing by B. Bergeron (2003), Prentice-Hall of India Private Limited, New Delhi 110 001
- 4. Bioinformatics (Instant Notes Series) by D. R. Westhead, J. H. Parish and R. M. Twyman (2003), Viva Books Private Limited, New Delhi, Mumbai, Chennai, Kolkata **BIONANOTECHNOLOGY**
- 1. Green Nanoparticles: The Future of Nanobiotechnology, edited by Shilpi Srivastava, Atul Bhargava, Springer Nature Singapore Pte Ltd., ISBN 978-981-16-7106-7.
- Woodhead Publishing Series in Food Science- Technology, and Nutrition Agricultural Nanobiotechnology Biogenic Nanoparticles, Nanofertilizers, and Nanoscale Biocontrol Agents, edited by Sougata Ghosh, Sirikanjana Thongmee, Ajay Kumar, Elsevier Inc., ISBN- 978-0-323-99936-6.
- 3. Pan Stanford Series on Nanobiotechnology—Vol. 1 Nanobiotechnology and Nanobiosciences by Cloudio Nicolini, World Scientific Publishing Co. Pte. Ltd, Singapore, ISBN-10 981-4241-38-5.
- 4. Nanoparticle Technology Handbook— Third Edition, edited By Makio Naito, Toyokazu Yokoyama, Kouhei Hosokawa Kiyoshi Nogi, Elsevier Inc., ISBN: 978-0-444-64110-6.

	Semester III	
Credit	Total: 4 Credits; Workload: -15 hrs /credit	Lectures
	(Total Workload: - 4 credits x 15 hrs = 60 hrs in semester)	(Hours)
	Course Outcomes:	
	At the end of this course the students will be able to:	
	1. Conduct different practicals of agricultural microbiology	
	2. Estimate different pesticide residues from the soil	
	3. Learn details about PGPR	
	4. Understand the bioremediation of soil	
	Cell Structure and Functions:	15
I	1. Prokaryotic and Eucaryotic cell architecture - cell wall, plasma membrane, structure and functions of cell organelles, vacuoles, mitochondria, plastids, golgi apparatus, ER, peroxisomes, glyoxysomes.	
	2. Cell division: regulation of cell cycle, protein secretion and targeting.	
	3. Cell growth and differentiation.	. –
II	Microbial Ecology and elemental cycles	15
	1. The soil environment, Bacteria, Actinomycetes, Fungi, Algae,	
	Protozoa, Viruses.	

MET 303 C: Agricultural Microbiology

	2 Details of the Contrary Contrary Contrary of Minutial	
	2. Details of the Carbon Cycle: Some aspects of Microbial	
	Physiology, Organic matter decomposition, Microbiology of	
	cellulose, hemicelluloses, Lignin decomposition, Microbiology	
	of other polysaccharides, Transformation of Hydrocarbons and	
	pesicides.	
	3. The nitrogen cycle: Mineralization and immobilization of	
	Nitrogen, Nitrification, Denitrification, Nitrogen fixation:	
	symbiotic, non-symbiotic,4. Phosphorous cycle,	
	5. Potassium cycle	
III	Microbial Products influencing plant growth	15
	1. Indole acetic acid, Gibberellins, Cytokinins, Ethylene,	10
	Antibiotics, Mechanism of Antibiotic Action, Resistance,	
	2. Aflatoxin, Toxins in Plant diseases, Bacterial and fungal	
	insecticides, Viral insecticides,	
	3. Microbial herbicides	
	4. Biological control of plant diseases	
IV	Biodegradation of Pesticides and Pollutants	15
	1. Insecticides: DDT, BHC, Lindane, Aldrin, Dieldrin,	
	Heptachlor, Chlordane, etc., Malathion, Parathion, Diazinon.	
	2. Herbicides: 2, 4-D,,Simazine and Atrazine, Linuron, TCA	
	Dalapon, Chloropham, Dicamba, Dichlobenil (Casoron),	
	Bromoxynil (Brominal), Bentazon, Diquat and Paraquat.	
	3. Fungicides: Thiram, Maneb, Ferbam, Nabam and Zineb PCP,	
	PCNB, Chloroneb, etc.nCaptan, Carboxin and Oxycarboxin,	
	Benomyl (Benlate), Streptomycin, Cycloxemide, Blasticidin-S,	
	Terramycin.	
	4. Fate of Pesticides in Soil (Biodegradation)	
	5. Bioavailability of Pesticides/ Pollutants, Acceleration of	
	Biodegradation	
	6. Bioremediation	

- 1. Introduction to Soil Microbiology Martin Alexander II 1961.
- 2. Soil Microbiology by N. S. Subba Rao, 2006
- 3. Soil Microorganisms and Plant growth by N. S. Subba Rao. 1995
- 4. Plant Biotechnology by Adrian Slater, Nigel Scott and Mark Fowler.2003.
- 5. Introduction to Plant Biotechnology by H. S. Chawla, 2004.
- 6. Agricultural Biotechnology by Prober Kanti Biswas, 2005.
- 7. Agricultural Applications of Microbiology by NeelimaRajvaidya and DilipkumarMarkandey 2009.
- 8. Techniques in Agricultural Microbiology by ThamizzhVendan, Pandiyarajan and Thangaraju, 2008.

MMPR- 304 PRACTICAL COURSE-1

UNITS	Semester	CREDITS
	Total credits = 04	
	Course Outcomes:	
	At the end of the practical course, students will be able to	
	1. Use statistical methods in data analysis	
	2. Learn basic practical skills in Bioinformatics	
	3. Learn basic practical skills in medical microbiology	
Ι	 Representation of statistical data by Histogram and Pie diagram. Measures of central tendency – Mean, median and mode Determination of measure of dispersion - Mean deviation, Standard deviation and coefficient of variation. 	1
	 Tests of significance - Chi-square test, t-test Analysis of Variance (ANOVA) - CRD, RBD 	
п	 Preparing tables and charts using MS Excel Preparing a PowerPoint presentation Retrieving protein and nucleic acid sequences from databases Prediction of protein structure using expasy server Visualization of 3D structure by using RASMOL Determine the microbial load (quantitative) in finished pharma or food product 	1
III	 Isolation of fungal pathogens from clinical sample Isolation of bacterial pathogens from clinical sample Determination of antibiotic sensitivity of bacterial pathogens isolated from clinical samples Demonstration of SARS – Cov-2 by rapid antigen test 	1
IV	 Isolation of siderophore producing microorganisms from body fluids Determination of susceptibility to dental caries by Snyder test Demonstration of bacterial exotoxins from clinincal sample. 	1

- 1. Alberts. B.; Johnson. A, Lewis J. Raff, M. Roberts. K. and P. Walter (2002) Molecular Biology of the cell 4th Edition. Garland Science, Taylor & Francis Group.
- 2. Benjamin Cunnings publishing Co. Inc. 2nd Edition
- 3. Boyer. R. (2000) Modern Experimental Biochemistry. 3rd Edition. Pearson Education Asia.
- 4. Cruse J and R. Lewis (2004) Atlas of Immunology 2nd Edn. CRC Press
- Elliott. W.H. and D.C. Elliot (2001) Biochemistry and molecular Biology. 2nd Edn. Oxford University Press.
- 6. Hand book of experimental immunology Vol. I by PM. Weinor (editor) 1978. Black Well scientific publications.
- 7. Jayraman Laboratory manual in Biochemistry, New Age International. Publishers, New Delhi
- 8. Mathews C.K. and K.E. Van Holde (1996) Biochemistry. The Benjamin Cunnings publishing Co. Inc. 2nd Edition
- 9. Plummer D.T, (1992)An introduction to Practical Biochemistry Tata cGraw Hill Publisher,New Delhi
- 10. .Reed, R; Homes, D; Weyers, J. and A. Jones. Practical skills in Biomelecular Sciences. Addison Wesley Longman Limited.

MEPR- 305 PRACTICAL COURSE-II

UNITS	Semester	CREDITS
	Total credits = 02	
	Course Outcomes:	
	At the end of this course the students will be able to:	
	1. Use basic softwares for bacterial systematics	
	2. Cultivate extremophiles.	
	3. Conduct experiment for detection of pollution strength.	
Ι	1. Retrieving protein and nucleic acid sequences from databases	1
	2. Single and multiple Sequence alignment using BLAST	
	3. Study of GenBank genomic entries	
	4. Preparation of SOP for Laboratory instruments – hot air oven,	
	incubator, pH Meter and autoclave	
	5. Preparation of HACCP flow chart	
II	1. Determination of MIC of pesticide against soil microflora	1
	2. Isolation and screening of plant growth promoting	
	rhizobacteria	
	3. Estimation of Nitrogen from biomass of Nitrogen fixing	
	bacteria isolated from soil by Kjeldahl method	
	4. Isolation and characterization of <i>Bacillus thuringiensis</i> from	
	soil by using selective medium.	

- 1. Bioinformatics: A Beginner's Guide by Jean-Michel Claverie and C. Notredame (2003), WileyDreamtech India (P) Ltd., New Delhi 110 002
- 2. Bioinformatics: A practical guide to the analysis of genes and proteins (2nd Ed) by A. D. Baxevanisand B. F. F. Ouellette (2001), John Wiley & Sons, New York.
- 3. Operate Computers yourself Part 2 by D. S. Minhas and G. Minhas, Dreamland Publications, j-128, Kirti Nagar, New Delhi 110 015
- 4. Agricultural Applications of Microbiology by Neelima Rajvaidya and Dilipkumar Markandey 2009.
- 5. Techniques in Agricultural Microbiology by Thamizzh Vendan, Pandiyarajan and Thangaraju, 2008

Semester IV

	Semester IV	
Credit	MMT 401: Food and Dairy Microbiology	Lectures
	Total: 4 Credits; Workload: -15 hrs /credit (Total Workload: - 4 credits x 15 hrs = 60 hrs in semester)	(Hours)
	Course Outcomer	
	Course Outcomes: At the end of this course the students will be able to:	
	1. Understand different methods of food preservation	
	2. Learn different food borne diseases	
	3. Acquire knowledge about probiotic and different food safety	
	and standards	
	4. Commercial values of fermented foods.	
Ι	1. Food as a substrate for Microorganisms	15
1	2. General principles underlying microbial spoilage of food	15
	3. Microbial spoilage of meat, fruits and vegetables	
	4. Microbial spoilage of heated canned food	
	5. General principles of Preservation of food: Asepsis, Removal of	
	microorganisms, killing of microorganisms, reducing the growth rate of microorganisms	
	6. Methods of food preservation: Thermal processing, cold preservation,	
	Preservation by using chemical preservatives, Food dehydration,	
	Preservation by using Irradiation, Canning of food	
II	1. Milk: Definition, composition, Factors affecting composition,	15
	Nutritive value of milk 2. Spoilage of milk and milk products:	
	a. Milk as a substrate for microorganisms	
	b. Microbial contamination of milk - sources of	
	contamination, types of microorganisms present inmilk	
	c. Biochemical activities during microbial spoilage of milk	
	3. Fermented foods: Microbiology and biochemistry of	
	a. Fermented cereal foods: Amboli, Jalebib. Fermented cereal legume foods: Idli, Dhokla	
	c. Fermented vegetable products: Sauerkraut, Pickles	
	4. Fermented milk products: Yoghurt, Cultured butter milk	
III	1. Food born diseases:-Food born intoxications: Botulism and	15
	staphylococcal intoxication and Foodborne infections	
	 Prevention and control of food borne diseases Fermented dairy products and their role in controlling food borne 	
	diseases:	
	a. Types of fermented dairy products, methods of preparation	
	b. Therapeutic significance and their health properties - mode	
	of action of lactic acid bacteria onenteric pathogens	
	 Fermented dairy products and their role in controlling gastro intestinal tract disorders 	
IV	1. Probiotics: probiotic microbial strains, role of probiotics in	15
1.4	gastrointestinal disorders, probiotics in reducing risks of cancer,	13
	immunogenic effects of probiotics	
	2. Enzymes in food processing: Need of enzymes, sources of enzymes	
	3. Applications of enzymes in: Production of high fructose syrup; Fruit	

juice industry, Baking industry, Oils and fat processing	
4. Food safety and standards: Food safety issues, Food adulteration,	
Contaminations with harmfulmicrobes, Metallic contamination, Food	
Laws and standards, Industrial food safety Laws and standards,	
HACCP, Indian Food Laws and standards	

REFERENCE BOOKS

1. 1. Food processing Biotechnological application (2000) by S. S. Marwaha & K. Arora, AsiatechPublishers INC, New Delhi

- 2. Food science, Fifth Edition, Norman N. Potter 1996, CBS publishers and distributors
- 3. The technology of food preservation, Fourth Edition, Norman W. Desrosier BI Publisher and Distributors, Delhi (1987)
- 4. Food Microbiology Adams & Moss
- 5. Dairy Microbiology by Robinson
- 6. Outlines of Dairy technology by Sukumar De
- 7. Milk and Milk Products Clarence
- 8. Food Science (5th ed) Norman N. Potter, Joseph N. Hotchkiss

	Semester IV	
Credit	MMT 402: Molecular Biology Tools and Applications	Lectures (Hours)
	Total: 4 Credits; Workload: -15 hrs /credit	. ,
	(Total Workload: - 4 credits x 15 hrs = 60 hrs in semester)	
	Course Outcomes:	
	At the end of this course the students will be able to:	
	1. Understand Modern tools and techniques in molecular biology.	
	2. Understand methods of cloning and its significance.	
	3. Learn the role of Recombinant DNA technology in industries	
Ι	Basic tools of rDNA Technology	15
	1. Enzymes: restriction endonucleases, exonucleases - DNA and	
	RNA; DNA polymerases, DNA ligases, alkaline phosphatase,	
	terminal transferase, reverse transcriptase,	
	2. Linkers and adaptors	
	3. Cloning vehicles (vectors):	
	Desirable features of ideal cloning vehicles	
	Plasmids:- pUC, pBR322 and its derivatives, IncP-group,	
	Viral based:- λ phage – basic and derivative vectors, M13, f1, fd	
	viruses, other viruses - addition, self- inactivating, helper-	
	dependent and helper-independent	
	Cosmids, phasmids, phagemids	
	Specialist purpose vectors:- M13 based, expression, shuttle, gene	
	inactivation, integrative, RNA probe and RNAi vectors, strong	
	promoter vectors, purification tag vectors, protein solubilisation	
	vectors, secretion vectors	
	Artificial chromosomes:- BAC, YAC, PAC	
	4. Gene probes: development and labeling of DNA and RNA probes	
II	Basic Cloning Strategies	15
_	1. General principles: DNA fragmentation, ligation to vectors,	
	introduction into the host cell, cell based and PCR based	
	strategies	
	2. Cloning in <i>Escherichia coli</i> and other bacteria:	

r		
	a. Construction of genomic libraries – Maniatis' strategy,	
	EMBL 3A vector strategy	
	b. Construction of complementary DNA (cDNA) libraries –	
	Maniatis' hairpin-primed second-strand DNA synthesis,	
	oligo-dC tail method, the Gubbler-Hoffman method,	
	direction cDNA cloning, plasmid-linked cDNA synthesis,	
	CAPture method	
	3. Screening of gene libraries: hybridization, PCR,	
	Immunochemical, Protein-protein interactions, Protein-ligand	
	interaction, functional complementation, gain of function	
	4. Expression of foreign DNA in transformed bacteria	
III	Cloning in Eukaryotes	15
	1. Cloning in yeast and fungi:	
	Vector systems: YEp, YCp, YAC, modular expression vector,	
	yeast secretion vector (pGAP), introduction of DNA, selectable markers	
	Heterologous protein production – source of DNA, level of	
	heterologous RNA, amount of proteinproduced, nature of product	
	2. Cloning in animals:	
	Vectors systems: plasmid based vectors - pSV2-dhfr, pRSV-neo,	
	virus based vectors - adenovirus, adeno-associated, baculovirus,	
	herpes virus, retrovirus, Sindbis and Semliki forest disease virus,	
	vaccinia and pox virus, EB virus	
	Cloning in mammalian cell-lines: methods of DNA transfection –	
	chemical, physical and biological (viral, bacterial) methods, choice	
	of cell-lines, transient and stable expression	
	Transgenesis of whole animals: microinjection of DNA in mice	
	and other animals, Embryo stem cell technology, DNA construct,	
	aberrant expression	
	3. Cloning in Plants:	
	Vectors systems: Ti plasmid of Agrobacterium tumefaciens and Ri	
	plasmid of Ag. Rhizogenes, viruses – caulimovirus, geminivirus,	
	BMV, TMV, PVX	
	Cloning in Plants: Agrobacterium- mediated gene transfer, direct	
TTT 7	DNA transfer, gene targeting, <i>inplanta</i> transformation	1 =
IV	Applications of rDNA Technology 1. Production of useful molecules in bacteria, plants and animals	15
	2. Improvement of agronomic traits in plants	
	3. Study, prevention and cure of diseases	
	4. Genetically modified foods Protein engineering and its	
	applications	
	upproutons	

1. Principles of Gene Manipulation and Genomics by S. B. Primrose and R. M. Twyman, BlackwellPublishing, Oxford, UK

2. Molecular Biology and Biotechnology (4th Ed) by J. M. Walker and R. Rapley, Panima PublishingCorporation, New Delhi

3. Recombinant DNA by J. D. Watson and others

4. Genetic Engineering by Chakravarty, CRC Publications

5. Genetic Engineering by Sandhya Mitra

6. Molecular Cloning (Volumes 1, 2, 3) by Sambrook and Russell. Cold Spring Harbor LaboratoryPress International Edition

7. Principles of Genetics by E. J. Gardner. John Wiley and Sons, New York

8. Maximizing Gene Expression by W. Reznikoff and L. Gold, Butterworths Biotechnology Series

9. Yeast Genetic Engineering by P. J. Barr and others, Butterworths Biotechnology Series

	Semester IV	
Credit	MET 403 A : Industrial Waste Management	Lectures (Hours)
	Total: 4 Credits; Workload: -15 hrs /credit	(
	(Total Workload: - 4 credits x 15 hrs = 60 hrs in semester)	
	Course Outcomes:	
	At the end of this course the students will be able to:	
	1. Characterize industrial effluents and their adverse effects on	
	environment 2. Learn the role of microorganisms in treatment of industrial	
	waste	
	3. Know about the rules and regulations of waste disposal	
Ι	1. Types and Characterization of industrial wastes:	15
	a. Types of industrial wastesb. General characteristics of different industrial wastes, pH,	
	suspended solids, volatile solids, COD, BOD and organic	
	carbon	
	2. Effects of industrial wastes on aquatic life- Effects of	
	industrial wastes of high BOD, effects of waste with toxicants3. Self purification in natural waters: Introduction, physical	
	process, chemical process, biologicalprocess	
II	1. Introduction to Microbiology and biochemistry of wastewater	15
	treatment.	
	2. cell physiology and important microorganisms – important microorganisms, role of enzymes, principles of growth, plasmid	
	borne metabolic activities; Impact of pollutants on biotreatment	
	3. Methods of industrial waste treatment: Part-I:- Physico-chemical	
	Methods - neutralization, oxidation of cyanides, Chromium	
	reduction, reverse osmosis, carbon adsorption, destruction of phenolic compounds	
	1 1	
III	1. Methods of industrial waste treatment: Part-II:-	15
	Biological methods – I – Activated sludge process- Process, microbiology, sludge bulking	
	Trickling filters- Process, Microbiology and applications	
	2. Methods of industrial waste treatment: Part-III:-	
	Biological methods – II	
	Lagooning- Aerobic and anaerobic, applications Anaerobic digestion- Process, microbiology of bio-gas formation,	
	applications	
IV	1.Biomanagement of industrial waste: technological options	15
	for treatment of liquid and solid wastes – bioaugmentation, packaged microorganisms, use of genetically engineered	
	microorganisms inwastewater treatment	
	2.Industrial waste treatment: methods of treatment of wastes	
	from Dairies, Distilleries, paper and pulp industries, fertilizer	
	industries and Pharmaceutical industries. 3.Zero waste discharge concept in industries.	
	4. Waste disposal control and regulations: Water pollution	
	control, Regulation and limits for disposal into lakes, rivers,	
	oceans and land	

MET 403 A: Industrial Waste Management

- 1. Industrial Pollution Control Vol. I by E. J. Middlebrooks
- 2. The treatment of industrial wastes. (2nd ed) by E. B. Besselievre and M. Schwartz
- 3. Environmental Biotechnology (Industrial pollution management) by S. N. Jogdand, HimalayaPublishing House
- 4. Water and water pollution Handbook Vol. I by Leonard L. Ciaccio
- 5. Wastewater Treatment by M.N. Rao and A. K. Datta
- 6. Industrial Pollution by N. L. Sax. Van Nostrand Reinhold Company
- 7. Encyclopaedia of Environmental Science and Technology Vol. II by Ram Kumar
- 8. Water Pollution Microbiology by R. Mitchell
- 9. Handbook of Water Resources and Pollution Control by H.W. Gehm and J. I. Bregman
- 11. Environmental Microbiology by P. D. Sharma, Narosa Publishing House, New Delhi

MET 403 B : Enzymology and Enzyme Technology

	Semester IV	
Credit	MET 403 B : Enzymology and Enzyme Technology	Lectures (Hours)
	Total: 4 Credits; Workload: -15 hrs /credit	(110015)
	(Total Workload: - 4 credits x 15 hrs = 60 hrs in semester)	
	Course Outcomes:	
	At the end of this course the students will be able to:	
	1. Learn basic concept of enzymology	
	2. Understand kinetics of enzyme catalyzed reaction	
	3. Know about industrial applications of enzyme	
Ι	 History and special properties of enzymes as catalysts IUB system of nomenclature and classification of enzymes Specificity of enzymes: a. Types:- substrate and product, group or relative, absolute – 	15
	stereochemical and spatial specificity b. Theories to explain specificity – Lock and Key and Induced Fit hypotheses	
	 Structure of enzymes: monomeric and oligomeric enzymes, Ogsten's experiment and the conceptof the Active Site Methods employed to identify functional groups in the active 	
	site – trapping of the intermediate, use of substrate analogues, modification of amino acid side chains, some common functional groups and amino acids, chemistry of the active site	
	 6. Co-factors in enzyme action: a. Organic – prosthetic groups, coenzymes and cosubstrates b. Inorganic – metal ions in enzyme function, metal activated 	
	enzymes and metallo-enzymes, ternary complexes	
II	1. Kinetics of single-substrate enzyme catalysed reactions - Wilhelmy's and Brown's work, Henri and Michaelis-Menten	15
	relationships, Briggs and Haldane assumption and derivation,	
	Lineweaver- Burk, Eadie-Hofstee, Hanes and Eisenthal and	
	Cornish-Bowden modifications of the M-M equation to derive	
	KM, Significance of the M-M equation and KM	
	2. Kinetics of multisubstrate reactions	
	3. Haldane's relationship for reversible reactions	
	4. Sigmoid kinetics – Hill and Adair equations for cooperativity	
	5. Enzyme inhibition: basic concepts, kinetics, examples	

	and significance of reversible and irreversible inhibition	
III	 Covalent modification of enzyme structure – irreversible and reversible modification Ligand induced conformational changes – basic concepts of allosterism and allosteric enzymes, models proposed to explain the mechanism of functioning (MWC and KNF); structural aspects of aspartate carbamoyltransferase, role of allosteric enzymes in metabolic regulation – feedback inhibition Multienzyme systems – basic concepts, types with examples, structural and functional aspects of pyruvate dehydrogenase, fatty acid synthetase, 'Arom' complex and tryptophan synthetase Membrane bound enzymes in metabolic regulation Isoenzymes – basic concepts, method of detection, examples and their metabolic significance 	15
IV	 Applications of enzymes in medicine: a. In diagnosis – general principles and use of alanine amino transferase, aspartate amino transferase, lactate dehydrogenase, creatine kinase, acid and alkaline phosphatase b. In therapy – specific applications of few selected enzymes, prodrug activation with examples, enzyme replacement therapy Industrial applications of enzymes – catalysts in the manufacturing and other conversion processes Enzymes as analytical tools Immobilisation of enzymes: basic concepts, methods used, properties of IME and their applications in industry, medicine, enzyme electrodes Newer approaches to the application of enzymes – reactions in organic solvents 	15

REFERENCE BOOKS

1. Enzymes: Biochemistry, Biotechnology, Clinical Chemistry by T. Palmer Affiliated East WestPress Pvt. Ltd. New Delhi

- Fundamentals of Enzymology N. C. Price and L. Stevens, Oxford University Press
 Nature of Enzymology R. L. Foster, Croom Helm Applied Biology Series, London
- 4. Enzyme Technology Pandey, Webb, Soccol and Larroche. Asiatech Publishers, INC New Delhi

5. Enzyme Nomenclature by IUBMB Academic Press Inc.

6. Enzyme structure and function – A. Fuerst, Freeman, USA

- 7. Immobilised Enzymes M. D. Trevan
- 8. Enzymes Boyer, Academic Press
- 9. Advances in Enzymology Series edited by N. O. Kaplan, Academic Press
- 10. Enzyme Biotechnology by G. Tripathi, Technoscience Publications
- 11. Enzyme Reaction Engineering by T. P. Jayadev Reddy, Biotech Books, Delhi
- 12. Enzymes and Immobilised Cells in Biotechnology by A. Laskin Butterworths BiotechnologySeries

	Semester IV	
Credit	MET 403 C: Clinical Microbiology	Lectures (Hours)
	Total: 4 Credits; Workload: -15 hrs /credit	
	(Total Workload: - 4 credits x 15 hrs = 60 hrs in semester)	
	Course Outcomes:	
	At the end of this course the students will be able to understand	
	1. Specimen collection, transportation and scientific disposal of Biomedical Waste	
	2. Emerging methods in Clinical Microbiology	
	3. Different methods to be used in clinical laboratory	
	4. Biosafety levels and their significance	
Ι	Basics of Clinical Microbiology:	15
	1. Concept of Clinical Microbiology	
	2. Specimen Collection for Microbial Testing	
	3. Test Methods and Method validation in clinical laboratory	
	4. Transportation Media used for clinically important pathogens	
	5. Disposal of contaminated using 'Common Biomedical Waste Facility Centers.	
	6. Laboratory set up for clinical microbiology	
	7. Need of Laboratory Accreditation by NABL	
	8. Benefits of Laboratory Accreditation	
II	Evolution of Microbial Identification Methods	15
	 Advantages and Limitations of Automation in Clinical Microbiology Laboratory 	
	2. VITEK System and its applications	
	3. MALDI-TOF MS for the identification of clinically important	
	pathogens	
	4. Syndrome based multiplex molecular testing	
	5. Blood Culture Panels	1.
III	Routine Tests for Clinical Labs:	15
	 Principle and working of blood cell counter: Liver Function Tests: SGOT, SGPT, ALKALINE 	
	PHOSPHATASE, VAN DEN BERG TEST	
	3. Kidney Function Tests: (Serum Creatinine Test, Glomerular	
	Filtration Test)	
	4. Collection and examination of CSF	
IV	Inevitable Methods in Clinical Microbiology:	15

1.	Flow Cytometry
2.	Precipitation
3.	Agglutination
4.	ELISA
5.	Biosafety Levels: BSL-1, BSL-2, BSL-3 and BSL-4

- 1. Clinical Microbiology. Procedure's Handbook.' 5th Edition May 2023, ASM Publication.
- 2. Official Website of National Accreditation Board for Testing and Calibration.
- 3. Official Website of Central Pollution Control Board
- 4. 'Clinical Microbiology. Procedure's Handbook.' 5th Edition May 2023, ASM Publication.
- Poornima Ramanan, Alexandra L. Bryson, Matthew J. Binnicker, Bobbi S. Pritt, and Robin Patel 'Syndrome Panel Based Testing in Clinical Microbiology', Clinical Microbiology Reviews. 2018 Jan; 31(1): e00024-17, Published online 2017 Nov 15. doi: 10.1128/CMR.00024-17
- 6. Synopsis of Clinical Pathology and Microbiology, 8th Edition, J. Sengupta, CBS Publishers
- 7. Biomedical Instrumentation and measurement by R. Ananda Natrajan Amazon
- 8. Principles and Techniques of Biochemistry and Molecular Biology, Wilson and Walker
- 9. Immunology, K.R.Joshi, 5th Edition Amazon
- 10. WHO Manual for Laboratory Biosafety (Official Website)
- 11. CDC Official website

MEPR- 404 PRACTICAL COURSE-I

UNITS	Semester	CREDITS			
	Total credits = 02				
	Course Outcomes:				
	At the end of this course the students will be able to:				
	 Learn about different qualitative tests used dairy industry Know about modern molecular biology techniques Apply molecular diagnostic technique 				
I	 Chemical analysis of foods: <i>p</i>H, benzoate, and sorbate Microbiology of butter and cheese Platform tests in dairy industry: COB, alcohol precipitation, titratable acidity. Quantitative phosphatase test Chemical examination of milk: <i>p</i>H, fat, protein, sugar and ash 	1			
II	 I 1.To study bacterial transformation 2.To study restriction digestion by endonucleases 3.Isolation and curing of plasmid 				
	4.Demonstration of PCR amplification of gene				

- 1. Laboratory Methods in Food Microbiology by D. W. Harrigan, Academic Press
- 2. Handbook of Techniques in Microbiology by A. S. Karwa, M. K. Rai and H. B. Singh

ScientificPublishers, Jodhpur

- 3. Dairy Microbiology by Robinson
- 4. Outlines of Dairy technology by Sukumar De
- 5. Genetic Engineering by Chakravarty, CRC Publications
- 6. Genetic Engineering by Sandhya Mitra
- 7. Molecular Cloning (Volumes 1, 2, 3) by Sambrook and Russell. Cold Spring Harbor LaboratoryPress International Edition.

MEPR-405 PRACTICAL	COURSE - II
---------------------------	-------------

UNITS	Semester	CREDITS			
	Total credits = 02				
	Course Outcomes:				
	At the end of this course the students will be able to:				
	1. Learn about industrial waste management				
	2. Purify enzyme and study its kinetics				
	3. Use techniques of an enzyme assay to characterize enzyme				
I	and find out its applications 1. Characterization of industrial wastes: pH, Alkalinity,	1			
1	TOC, DO, total solids (TS), total suspended solids (TSS),	1			
	total dissolved solids (TDS), total volatile solids (TVS)				
	2. Treatability test for industrial effluents				
	3. Development of an activated sludge culture				
II	1. Quantitative estimation and determination of specific activity				
	of α-amylase				
	2. Salt (ammonium sulphate) precipitation of α -amylase				
	3. Study of the effect of:				
	a. Substrate concentration [S0] on α -amylase and				
	determination of Vmax and KM				
	b. Hydrogen Ion concentration (<i>p</i> H) and determination of				
	optimum pH for activity of α -amylase				
	c. Temperature – determination of optimum temperature				
	for activity of α -amylase d. Metal ions on α -amylase				
	4. Immobilisation of α -amylase by entrapment in alginate gel and				
	determination of loadingefficiency				

- 1. Laboratory Manual in Biochemistry by J. Jayaraman. New Age International Publishers
- 2. An Introduction to Practical Biochemistry by D. T. Plummer TMH Publishers
- 3. Immobilised Enzymes M. D. Trevan
- 4. Advances in Enzymology Series edited by N. O. Kaplan, Academic Press
- 5. Standard Methods in Water and Wastewater Analysis by APHA, AWWA and WPCF
- 6. Analysis of Plants, Irrigation water and Soils by R. B. Somawanshi and others. Mahatma PhuleAgricultural University, Rahuri

Nature of question paper and scheme of marking:

a) External Evaluation (Semester exam) Theory paper: Maximum marks - 80

- ✓ Equal weightage shall be given to all units of the theory paper
- ✓ Total number of questions -07
- ✓ All questions will carry equal marks.
- ✓ Out of the seven questions, five are to be attempted of which Question 1 will be compulsory
- ✓ Question No. 1 will be of an objective type
- ✓ Total No. of bits -16, Total marks -16
- ✓ Nature of questions multiple choice, fill in the blanks, definitions, true or false, match the following
- \checkmark These questions will be answered along with the other questions in the same answer book
- $\checkmark\,$ Remaining six questions will be divided into two sections, I and II.
- ✓ Four questions are to be attempted from these sections in such a way that not more than two questions are answered from each section.
- \checkmark Both sections are to be written in the same answer book

Total Marks: 80

Instructions: 1. A total of **FIVE** questions are to be answered from the entire paper

- 2. Answers to all the **FIVE** questions are to be written in the **SAME** answer book
- 3. Question 1 is **COMPULSORY**
- 4. Attempt **ANY TWO** questions from Section I (Q. 2 to Q. 4) and **ANY TWO** questions from Section II (Q. 5 to Q. 7)
- 5. No supplements will be provided
- 6. Figures to the **RIGHT** indicate **FULL MARKS**

Q.1 State whether the given statements are TRUE or FALSE/MCQ. (16)

SECTION - I

Q. 2.			(16)
		OR	
Q. 2.			(16)
Q. 3	Discussin brief (ANY TWO)		(16)

	a)	
	b)	
	c)	
Q. 4	Write short notes on (ANY FOUR)	(16)
	a)	
	b)	
	c)	
	d)	
	e)	
	f)	

SECTION – II

Q. 5			(16)
		OR	
Q. 5			(16)
Q. 6	Describe in brief (ANY TWO)		(16)
	a)		
	b)		
	d)		
Q. 7	Write short notes on (ANY FOUR)		(16)
	a)		
	b)		
	c)		

- d)
- e)
- f)

b) Internal Evaluation Theory paper: Maximum marks - 20

Objective- multiple choice/True or false/ fill in the blanks/match the following

Total number of questions will be 10 each carrying 01 mark

PRACTICAL EXAMINATION

- There will be semester wise practical examination to be conducted at the end of each semester.
- Total marks -150 per semester out of which 120 marks will be assessed by external examiner.
- Nature of question paper for practical examination will be provided by BOS before the practical examination.

Old Course Equivalent Course						
Sem.	Course	Title of Old Course	Credit	Course	Title of New Course	Credit
No.	Code	Title of Old Course	Credit	Code	The of New Course	Credit
Ι	MIC -	Biostatistics,	4	MMT -	Quantitative Biology	4
	301	Bioinformatics and		301		
		Scientific Writing				
Ι	MIC -	Enzymology and	4	MMT -	Medical Microbiology	4
	302	Enzyme Technology		302	and Virology	
Ι	MIC -	Fermentation	4	MET -	A –	4
	303	Technology		303	Bioethics, Biosafety,	
					Quality control in	
					Microbiology	
					B –	
					Bioinformatics,	
					Biostatistics and	
					Bionanotechnology	
					C –	
					Agricultural Microbiology	
Ι	MIC -	Quality Control	4	RP -306	Research Project	4
1	304	Microbiology I	-	KI -300	Research i Toject	-
Ι	MIC -	Practical Course – V	4	MMPR	Practical Course I	4
-	305	Theorem Course v		304		
Ι	MIC -	Practical Course –	4	MEPR	Practical Course II	2
	306	VI		305		
II	MIC -	Food and Dairy	4	MMT -	Food and Dairy	4
	401	Microbiology		401	Microbiology	
II	MIC -	Industrial waste	4	MMT -	Molecular Biology	4
	402	management		402	Tools and	
					Applications	
II	MIC -	Recombinant DNA	4	MET -	A – Industrial waste	4
	403	Technology		403	management	
					B – Enzymology and	
					Enzyme technology	
					C- Clinical	
TT			4	DD 404	Microbiology	
II	MIC -	Quality Control	4	RP-406	Research Project	6
TT	404	Microbiology-II	4			
II	MIC -	Practical Course –	4	MMPR -	Practical Course I	2
TT	405	VII Practical Course –	4	404 MEDD	Drastical Course II	2
II	MIC -		4	MEPR -	Practical Course II	2
	406	VIII		405		

Equivalence of courses M. Sc. Part II (Semester III and IV)

ANNEXURE I

DECLARATION BY THE CANDIDATE

I(Name of the candidate)...... hereby declare that the dissertation project/OJT entitled Submitted by me to Shivaji University Kolhapur for the degree of 'Master of Science' in the subject of 'Microbiology' under the 'Faculty of Science' is an original piece of work carried out by me under the supervision of (name of the guide). I further declare that it has not been submitted to this or any other university or the institution for the award of degree or diploma. I also confirm that all material which I have borrowed from other sources and incorporated in this thesis is duly acknowledged. Failure to acknowledge or cite the scientific resources in the submitted thesis will be entirely my responsibility. I am fully aware of the implications of any such act which might have been committed by me advertently or inadvertently.

Place;

Date:

Name and Signature of the student

Note: Attach Plagiarism report duly signed by the candidate and Head of the Department/DAIP Member.

DEPARTMENTAL ACADEMIC INTEGRITY PANEL (DAIP) CERTIFICATE

Place:

Date:

Chairman DAIP External Member DAIP

Head of the Department

Principal

(Note: Composition of DAIP committee should be as per 'Gazette of India' dt. 31^s July 2018, Extraordinary Part III)

ANNEXURE III

A

CERTIFICATE OF GUIDE

This is to certify that, the work incorporated in the dissertation project/OJT entitled '..........' Submitted by(Name of the candidate) for the degree of 'Master of Science' in the subject of 'Microbiology' under the 'Faculty of Science' has been carried out in the(Place of work/OJT).......during the period of DD/MM/YYYY to DD/MM/YYYY under my direct supervision/guidance.

Place:

Date:

Name and Signature of Guide